Scala: using functional programming on the JVM – part 3


Hi, dear readers! Welcome to my blog. On this post, the last on this series, we will continue to see more features from the Scala language. If you haven’t read the previous post, please go to the “programming languages” menu option to find all of the series. So, without further delay, let’s begin!


Collections, as the name implies, are data structures where we can store and organize data. There is various types of Collections that can be used on the Scala language, all common from any programming language and with all the standard behavior from their types, such as lists, sets and maps.

On the next sections, we will see the major methods that Scala offers us to work with their collections.

So, let’s fire up the Scala REPL and begin!


As the name, implies, filter can be used to filter data from a collection, generating a subset. Let’s begin by creating a List:

val mylist = List[Integer](1,2,3,4,5)

Next, we create a function that returns if a number is even:

def isEven(n:Integer) = n % 2 == 0

And finally, we used the filter function, printing on console the even numbers:

scala> mylist.filter(n => isEven(n)).foreach(println(_))



As we can see, it printed only 2 and 4 from our list, proving that our filtering was successful.

One important thing to note on this and the other methods is that none of the methods changes the original collection, they always create and returns a new one, since they are designed to work with immutables. We can check this by printing the list:

scala> print(mylist)

List(1, 2, 3, 4, 5)


The find method is similar to the filter one, but instead of returning a subset, it returns only a element from the collection. The return is a optional, typed from the same type of the element type from the collection.

For this example, we will use the same collection from our previous example. If we wanted to return only the number 2 element and print on console, all we have to do is this:

scala> println(mylist.find(n => n == 2).getOrElse(0))



The map is another common method for collections on programming languages. His objective is to take a collection and transform his elements on new elements, that could be from a different type, generating a new collection. Let’s see a example.

On our example, we will take the numbers from our previous list and create a new list, where the numbers are transformed on strings on the format “the number is x”. If we wanted to do this transformation and print the result on console, we can do the following:

scala> => "the number is " + n).foreach(println(_))

the number is 1

the number is 2

the number is 3

the number is 4

the number is 5


Another interesting method is the flatmap. The flatmap is similar to a map, but with one difference: when used against complex objects of nested collections, this method denormalize the results, generating a flat collection. Let’s see a example.

First we create a class:

case class classA(val a: String, val b : List[String])

Then, we create a list with objects from our class:

scala> val myobjectlist = List(classA("A",List("A","B","C")),classA("B",List("A","C")),classA("C",List("C")),classA("D",List("A","B")))

myobjectlist: List[classA] = List(classA(A,List(A, B, C)), classA(B,List(A, C)), classA(C,List(C)), classA(D,List(A, B)))

Now, let’s see the result on the REPL, if we try to map our list, using only the b attribute:

scala> val mapobjectlist = => n.b)

mapobjectlist: List[List[String]] = List(List(A, B, C), List(A, C), List(C), List(A, B))

As we can see above, the result is a list of lists. This gives us a extra complexity to iterate over our results, since we will need to access each internal list individually in order to obtain all the elements.

Now let’s see the same result, using flatmap this time:

scala> val mapobjectflatlist = myobjectlist.flatMap(n => n.b)

mapobjectflatlist: List[String] = List(A, B, C, A, C, C, A, B)

Now, the list is flatten to a single List, allowing us to iterate over the elements much easier.


Another useful feature when working with collections is the reduce method. With result, as on map’s case, we make a transformation on a list, but on this case, instead of generating a new collection, we aggregate the collection, generating a new value.

The simplest and easier example we can demonstrate is simply summing up the values. If we wanted to sum up all the values from our numeric list, all we need to do is this:

scala> println(mylist.reduce((sum,n) => sum+n))


A important thing to take note is that, on this case, the order from which the numbers will be iterate is from left to right. If we would like to explicit this ordering or reverse it, we could do this by using the reduceLeft or reduceRight methods instead.


Fold is pretty similar to the reduce method, but with a fundamental difference: while reduce obligates us that the result must be from the same type of the source elements, fold doesn’t. Let’s see a example to better understand it.

Let’s suppose that, different from our previous example, we wanted to generate a string from the numbers of our numeric collection, separated by parentheses. We can do this using the following:

scala>  val foldlistStr = mylist.fold("")((sum,n) => sum+"("+n+")")

foldlistStr: Comparable[_ >: Integer with String <: Comparable[_ >: Integer with String <:] with] with = (1)(2)(3)(4)(5)

scala> println(foldlistStr)



As we can see, on this case, we not only had to declare the folding method, but also a empty string at beginning. That it was the aggregator variable, which is then used at each iteration to form the aggregation. This is necessary in order to allow Scala to infer what it will be the type of the result of our folding operation.


And so we conclude our trip on the Scala language. I hope I could bring for the reader a glimpse of the language and all his power. While is not as popular as languages such as Java or C#, it is definitely a good language worthy to be considered, specially on distributed systems where it could be used with distributed tools, such as Akka.

Thank you for following me on my series, see you next time!


Scala: using functional programming on the JVM – part 2


Hi, dear readers! Welcome to my blog. On this post, we will continue to see more features from the Scala language, such as abstract classes, traits and optionals. If you haven’t read the previous post, please go to the “programming languages” menu option to find all of the series. So, without further delay, let’s begin!

Abstract classes

Abstract classes on Scala are just like in any other OO language, that is, they are classes that have methods without implementation, that must be implemented by other classes in order to be used.

On Scala, we can create a abstract class like this, for example:

abstract class MyAbstractClass {
 def methodA(str: String): Set[String]

On this code, we are creating a abstract class MyAbstractClass and declaring a method called methodA which has a string as parameter and returns a Set of strings.

In order to implement the class, we could have a class as follows:

class MyAbstractClassImpl extends MyAbstractClass {
 def methodA(str: String): Set[String] = ???


On this code, we are extending the abstract class – on Scala, like Java, we can’t have multiple inheritance, so we can just extend one class – and provide a empty implementation for the method, with the keyword ???. This keyword produces the equivalent on Java as when we create a method that throws a NotImplementedError. We can see this if we try to instantiate and call the method, which will give us the following output:

scala.NotImplementedError: an implementation is missing

at scala.Predef$.$qmark$qmark$qmark(Predef.scala:284)

at MyAbstractClassImpl.methodA(MyAbstractClassImpl.scala:3)

at Main$.delayedEndpoint$Main$1(Myscript.scala:17)

at Main$delayedInit$body.apply(Myscript.scala:1)

at scala.Function0.apply$mcV$sp(Function0.scala:34)

at scala.Function0.apply$mcV$sp$(Function0.scala:34)

at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)

at scala.App.$anonfun$main$1$adapted(App.scala:76)

at scala.collection.immutable.List.foreach(List.scala:378)

at scala.App.main(App.scala:76)

at scala.App.main$(App.scala:74)

at Main$.main(Myscript.scala:1)

at Main.main(Myscript.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)


On the next post on the series, we will see how Scala’s inheritance mechanisms work on more detail. For now, let’s move on to our next topic, Traits.


Traits can be thought out like interfaces. With traits, we can create several different contracts to standardize our classes, while also providing default implementations for any method that requires it – just like default methods from Java 8 onwards.

To create a trait with 2 methods, one with a implementation and one without it, we can code like this:

trait MyLogger {
 def logPrintln(msg: String): Unit = println(msg)

 def log(msg: String): Unit


On this code, we declared 2 methods that receive a string as parameter and have void returns, one with a implementation and one without it. To test multiple traits inheritance, let’s create another trait as follows:

trait MyMathLibrary {
 def add(a: Double, b: Double): Double = a + b


If we wanted our previous class to implement our traits as well, we could just change the code as follows:

class MyAbstractClassImpl extends MyAbstractClass with MyLogger with MyMathLibrary {
def methodA(str: String): Set[String] = Set[String]("a","b","c")

def log(msg: String): Unit = { 

 println("this log is the same as the other method")



On the code we see that we chained the traits with the with keyword. We also provided a implementation for the abstract class’s method so we don’t receive a not implemented exception anymore.


Sealed traits & classes

Another cool feature from Scala are sealed classes and traits. If we want a class or trait to be prohibited of been extended outside of their own source file, we use the keyword sealed. This is particularly useful when implementing libraries, in order to prevent users from the library from changing the behavior of the library.

To seal a class or trait, we just change like this:

sealed abstract class MyAbstractClass {
 def methodA(str: String): Set[String]

Now, if we try to compile our code, we will receive the following error:

MyAbstractClassImpl.scala:1: error: illegal inheritance from sealed class MyAbstractClass

class MyAbstractClassImpl extends MyAbstractClass with MyLogger with MyMathLibrary {


one error found

Showing that our seal was successful. To allow our class to compile again without removing the seal, the only way is moving the abstract class to the same file of the implementation, like the following:

sealed abstract class MyAbstractClass {
 def methodA(str: String): Set[String]

class MyAbstractClassImpl extends MyAbstractClass with MyLogger with MyMathLibrary {
def methodA(str: String): Set[String] = Set[String]("a","b","c")

def log(msg: String): Unit = {

println("this log is the same as the other method")



If we try to compile again, we will see that now our class can compile again as normal.


Optionals on Scala are called options. With options, we can create code that it is resilient, since we won’t need to worry about shielding our code from null values.

When working with options, we can instantiate the Option type using 2 alternatives:

  • Some(value): the Some keyword allows us to return a value on optionals;
  • None: the None keyword allow us to represent the null value, that is, the absence of value;

Also, with options, we have two ways to get a value:

  • get: using this method, we receive the value inside the option, or a NoSuchElementException if the value is null;
  • getOrElse(value): using this method, we receive the value inside the option, or the value passed by parameter if the value is null. This way, we can guarantee a default value in case the data doesn’t exist;

Let’s see a example. On our REPL, let’s create a Map:

val mymap = Map(
 ("1", "value 1"),
 ("2", "value 2")

Next we get values from the map. If we try to get values that exist and don’t exist on the map with the getOrElse method, we receive this output on console:

Welcome to Scala 2.12.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_73).
Type in expressions for evaluation. Or try :help.

scala> val mymap = Map(
 | ("1", "value 1"),
 | ("2", "value 2")
 | )
mymap: scala.collection.immutable.Map[String,String] = Map(1 -> value 1, 2 -> value 2)

scala> val value1 = mymap.get("1")
value1: Option[String] = Some(value 1)

scala> val value2 = mymap.get("2")
value2: Option[String] = Some(value 2)

scala> val value3 = mymap.get("3")
value3: Option[String] = None

scala> val value4 = mymap.get("4")
value4: Option[String] = None

scala> println(value1.getOrElse("X"))
value 1

scala> println(value2.getOrElse("X"))
value 2

scala> println(value3.getOrElse("X"))

scala> println(value4.getOrElse("X"))


This shows that optionals are a viable option on dealing with optional values on the Scala language.

Error handling

As any other language, Scala also have a error handling system. Like Java, Scala also use exceptions as forms to encapsulate errors. Previously we have seen the ??? keyword and how we receive a NotImplementedError if we try to use a method with that keyword. If we wanted to explicit do what the keyword encapsulates, we could do this:

def methodA(str: String): Set[String] = throw new NotImplementedError()

We can see that it is pretty much very straightforward from anyone who has a background on Java. The catching of exceptions are very similar to Java also, like on the following code, supposing that our method throws several types of exceptions:

try {
} catch {
 case e: IOException => println("IO exception")
 case e: Exception => println("general exception")
 case _ => println("general error")

Of course, we also have the finally block, that could be used as follows:

try {
} catch {
 case e: IOException => println("IO exception")
 case e: Exception => println("general exception")
 case _ => println("general error")
} finally {
 println("this executes no matter what")

Did you notice the “_”? That keyword was used to catch not only exceptions, but also error. On Scala we have a exception hierarchy that it is pretty much very similar to his Java counterpart, with two classes, Error and Exception, that extends from a root class called Throwable.

However, there is a key difference: Scala doesn’t have checked exceptions. That means we don’t have exceptions marked on method’s signatures as throwable neither we have the obligation to catch any exceptions that are thrown by a method. This can be considered a bad thing specially when we don’t known all the details from a code we are consuming, but it gives us flexibility to catch the exceptions wherever we want to.

Inheritance on Scala

On Scala, we have 3 types of inheritance, as follows:

  • Invariant: invariant inheritance means that only the exact type is allowed;
  • Covariant: covariant inheritance means that only the exact type and their subclasses are allowed;
  • Contravariant: contravariant inheritance means that only the exact type and their superclasses are allowed;

When using generics on Scala we use square brackets ([]).  When declaring the generic type, we could indicate if it is covariant or contravariant using the “+” and “-” symbols respectively. So, if we wanted to create a generic class to be used for a class and their subclasses, we could declare as:

class mygenericclass[+T](val id: T)

And on the opposite side, if we wanted the class to be using a class and their superclasses, we could declare as:

class mygenericclass[-T](val id: T)

On functions, however, there is a role that must be always remembered: On functions, all the parameters are contravariant, that is, they accept values from the declared type or supertypes, and the return is always covariant, in other words, it accepts values from the declared type or their subtypes.


One last feature we will visit on this lab are implicits. With implicits, we can wrap it up classes that already exists with new features, without needing to extend or overload the original class. Even classes from the standard libraries can be wrapped this way!

Let’s see a example. On the REPL, we create a class like this:

case class myclass(val a:String, val b:String)

Now, let’s try to instantiate and use a print method on the class:

scala> val instance = new myclass("a","b")

instance: myclass = myclass(a,b)

scala> instance.print

<console>:13: error: value print is not a member of myclass




Of course, we got a error, since this method doesn’t exist. Now, we create a wrapper class:

implicit class myclasswrapper(mycl:myclass) { def print = println(mycl.a+mycl.b) }


Notice the implicit keyword? That means our class was created as a implicit, meaning that if we try to invoke the print method again:

scala> instance.print


It will now work, as Scala is implicit converting our class to a myclasswrapper. Please note that, before Scala 2.10, we would need to create a method with the implicit keyword and make the wrapping by hand, instead of the useful declaration on the class level.

It is important to take caution, however, of not abusing of implicits, since we can change the behavior of basically everything on the language, making a application very unpredictable if the feature is overused!


And that concludes our second part on the Scala series. Next, on our last part, we will learn about collections and all that we can benefit from it. Thank you for your attention, until next time!

Scala: using functional programming on the JVM – part 1


Hello, dear readers! Welcome to my blog. On this post, we will talk about Scala, a powerful language that combines the object paradigm with the functional paradigm. Scala is used on several modern solutions, such as Akka.

Scala is a JVM-based language, which means that Scala programs are transformed in Java bytecode and them are run with the JVM. This guarantees that the robust JVM is used on the background, leaving us to use the rich Scala language for programming.

This is a 3-part series focused on learning the basis of the language. On this first part we will set up our environment and learn about the Scala type system, vars, vals, classes, case classes, objects, companion objects and pattern matching. On the other parts, we will learn other features such as traits, optionals, error handling, inheritance on Scala, collection-related operations such as map, folder, reduce and more. Please don’t miss out!

So, without further delay, let’s begin our journey on the Scala language!

Setting up

In order to prepare our lab environment, first we need to install Scala. You can download the last version of Scala – this lab is using Scala 2.12.1 – on this link. If you are using Mac and homebrew, the installation is as simple as running the following command:

brew install scala

In order to test the installation, run the command:

scala -version

This will print something like the following:

Scala code runner version 2.12.1 -- Copyright 2002-2016, LAMP/EPFL and Lightbend, Inc.


The REPL is a interactive shell for running Scala programs. The name stands for the sequence of operations it realizes: Read-Eval-Print-Loop. It reads information inputed by the user, evaluates the instruction, prints the result and start over (loops). In order to use the Scala REPL, all we have to do is type scala on a terminal. This will open the REPL shell, like the following snippet:

Welcome to Scala 2.12.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_73).

Type in expressions for evaluation. Or try :help.


When we are done with the REPL, all we have to do is press Crtl+C. Another way of running Scala programs is by creating Scala scripts (.scala files). When using Scala scripts, we first compile the script using the scalac command.

This hints a important thing to notice about Scala: Scala is not dynamic typed. It has some similarities in syntax with languages like Python, but we have to remember that it is static typed, as we will see on the next section.

Scala type system

As we talked before, Scala is compiled, opposed to other languages such as Python, Clojure etc. This means that when we write programs on Scala, the interpreter infers the type of a variable (immutable or not) by the type of value that it is attributed to. Let’s see this in action.

Let’s open the Scala REPL. We type var number=0 and hit enter. The following will be printed on our console:

scala> var number=0

number: Int = 0

As we can notice, the variable was defined as a integer, since we attributed a number to it. The reader could be thinking “but this is exactly like a dynamic typed language!”. It appears so at first, but here is a catch: if we try to change the variable to another type of value, this happens:

scala> number="a string"

:12: error: type mismatch;

 found   : String("a string")

 required: Int

       number="a string"


The interpreter throws a error, saying that the variable we defined previously is a integer, so we can’t change to a string, for instance. This is fundamentally different from dynamic typed languages, where we can change the type of a variable as much as we like.

This could be seen as a weak point depending on the point of view, but must be more seeing as a design choice: using a strong typed scheme, we have more security about knowing what exactly to expect from each variable in use on the system.

This is particularly important on the functional paradigm, where we normally use more immutable variables them mutable ones, as we will talk about on the next section. One last thing before we go: although we can use the interpreter inference to create the variables, we can also explicitly define the type during the creation, like with the following variable:

scala> var number2: Int = 1

number2: Int = 1


Var vs. Val

On Scala, we can declare variables using 2 keywords: var and val. The creation code on the 2 options is essentially the same, but there’s a primary difference between the 2: vars can have theirs values changed during their lifecycles, while vals can’t.

That means vals are immutable. The closest equivalent example we can have on Java code is a constant, which means that once declared, his value will never be changed again.

When working with the functional programming paradigm, essentially we use immutables most of the time. With immutables, we have the security that our functions will always behave as intended, since a function won’t change the data, making new runs with the same parameters always returns the same results.

Let’s test if vals can’t really be changed. Let’s create a string typed val, with the following code:

val mystring = "this is a string"

Then, we try to change the string. When we do this, we will receive the following:

scala> mystring = "this is a new string"

:12: error: reassignment to val

       mystring = "this is a new string"



The interpreter has complained that we are trying to change a val, proving that vals are indeed immutable.


On Scala, everything runs on a object. That’s why despite the fact that Scala allows us to develop using the functional paradigm, we can’t say that Scala is a pure functional programming language, like Haskell, for example.

On Scala’s object hierarchy, the root class for all classes is called Any. This class has 2 subclasses: AnyValue and AnyRef. AnyValue is the root class for primitive values such as integers, floats etc – all primitives on Scala are internally wrappers. AnyRef is for classes that are not primitives, like the classes we will develop on the lab, for example.

So, let’s create our first class! to do this, let’s create a file called Myclass.scala and enter the following code:

class Myclass(val myvalue1: Int, val myvalue2: String)

That’s right. All we have to do is this one line of code, and we have a complete class at our disposal! On this line, we created a class called Myclass, with 2 attributes: myvalue1 and myvalue2. Not only that, with this line we created a constructor that receives the 2 attributes as parameters and getter accessors. All of this with just one line!

The reason because Scala created the attributes to be set at object creation is because we declared the attributes as immutables. If we had declared them as vars, then Scala would have created setter accessors as well.

Since we are talking about constructors, it is important to know that we can also overload the constructor, by defining the constructor with the keyword this. For example, if we would like to have the option of a constructor that don’t need to pass the attributes, instead using default values, we could change the class like this:

class Myclass(val myvalue1: Int, val myvalue2: String) {

  def this() = this("", "")


Case classes

Another interesting thing about classes are case classes. With case classes, we have a class that has already coded the hashCode, equals and toString methods. How do we do this? Simple, by modifying our class as follows:

case class Myclass(val myvalue1: Int, val myvalue2: String) {

  def this() = this("", "")


That’s all we have to do, we just have to include the keyword case and the methods are implemented with a default implementation. That is another good example of how Scala can simplify the developer’s life.


We talked earlier about how everything on Scala are classes. However, there are cases when we want a class to have only one instance on the entire system. We commonly call this type of class Singletons. To achieve this on Scala, we declare objects.

Objects are like classes on their body, just that they can’t be instantiated, since they already are instances. Let’s create a simple Hello World script in order to learn how to create objects.

Let’s create a file called Myscript.scala. On the file, we code this:

object Myscript extends App {

print("Hello World!")


And then we compile with scalac Myscript.scala. When running with scala Myscript, we get the following on the console:

Hello World!%

The App that we extended with is the hint for Scala that this object is the main script for our Scala application to run. We will see more about inheritance on future parts of this series.

Companion objects

Companion objects are like the ones we just saw previously, with just one big difference: this objects must have the same name of a class, be declared on the same file of that class and they have access to attributes and methods from that class, even the private ones.

The use of companion classes could be to create factory methods. One example of this use is the case classes we saw before, that create methods such as toString for us. Internally, when we declare case classes, Scala creates a companion object for that class.

Pattern matchers

The last feature we will talk about are pattern matchers. With pattern matchers, we can run pieces of codes by case statements, similar with switch clauses on Java. Let’s see a example.

We will use the Myclass class we created earlier. Let’s suppose we have a scenario where we want to perform a different print depending on the value of the myvalue1 attribute and print the value itself if it doesn’t fit on any of the clauses. We can do this by coding the following:

object Myscript extends App {

case class Myclass(val myvalue1: Int, val myvalue2: String)

val myclass = new Myclass(1,"Myvalue2")

val result = myclass match {
 case Myclass(1, _) => "this is value 1"
 case Myclass(2, _) => "this is value 2"
 case m => s"$m"



On the code above, we stated that if we have a class with the value 1 as first attribute – the second one is defined with the “_” keyword, which means that we are accepting any value for that attribute – we output the string “this is value 1”, the string “this is value 2” for the 2 value and we will output the values from the class itself for any other value. If we run the code above, we will receive this message on the terminal:

this is value 1%

Showing that our code is correct. One important thing to notice, due to good practices recommended for Scala, is that when using pattern matchers, when you get the content from the variable been matched – the case of our last clause – always use lower-case only names. That is because when declaring the name starting with a upper-case letter, the Scala interpreter will try to find a variable with that name, instead of creating a new one. So, always remember to use lower-case variables on this cases.


And that concludes our first trip to the Scala language. On our next parts, we will see more interesting features of the language, such as traits, inheritance and optionals. Stay tuned!

Thanks you for your attention, until next time.